iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.

نویسندگان

  • Stefano Andreozzi
  • Ljubisa Miskovic
  • Vassily Hatzimanikatis
چکیده

Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains

Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...

متن کامل

A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...

متن کامل

I-40: Male Genome Programming, Infertility and Cancer

Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metabolic engineering

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2016